SSC CGL ALGEBRA QUANT QUIZ

Attempt now to get your rank among 47 students!

Question 1:

In these questions, two equations (i) and (ii) are given, you have to solve both the equations and give answer accordingly.
(i) $6 x^{2}-11 x+4=0$
(ii) $3 y^{2}-5 y+2=0$

Question 2:

If $x+\frac{1}{x}=-2$, then the value of $x^{\mathrm{p}}+x^{\mathrm{q}}$ is:

(Where $p=$ even number $\& q=$ odd number)

Question 3:

If $x-\frac{1}{x}=5$ then the value of $x^{2}+\frac{1}{x^{2}}$ is :

Question 4:

If $\mathrm{x}^{137}+\frac{1}{\mathrm{x}^{137}}=10$ then find the value of $\mathrm{x}^{274}+\frac{1}{\mathrm{x}^{274}}$.

Question 5:

If $x^{4}+\frac{1}{x^{4}}=47$, then the value of $x+\frac{1}{x}$ is :

Question 6:

If $\frac{\mathrm{a}}{\mathrm{b}}=\frac{x+3}{x-3}$, then what is the value of $\frac{a^{2}+b^{2}}{a^{2}-b^{2}}$ ?

Question 7:

If $a+b=18, a b=72$ and $a^{3}+b^{3}=5832$ then find the value of $\frac{\mathrm{a}^{2}+\mathrm{b}^{2}}{\mathrm{ab}}$.

Question 8:

If $n+\frac{2}{3} n+\frac{1}{2} n+\frac{1}{7} n=97$ then the value of $n$ is:

Question 9:

Maximum Value of $f(x)=\left(\frac{1}{x}\right)^{2 x}$ is

Question 10:

If $a+b+c=5$ and $a^{3}+b^{3}+c^{3}-3 a b c=185$, then the value of $a b+b c+c a$ lies between: