Question 6:
If mutually perpendicular vectors $\vec{a}, \vec{b}, \vec{c}$ are given by
$\vec{a}=a_{1} \vec{i}+a_{2} \vec{j}+a_{3} \vec{k}$
$\vec{b}=b, \vec{i}+b_{2} \vec{j}+b_{3} \vec{k}$
and $\vec{C}=c_{1} \vec{i}+c_{2} \vec{j}+c_{3} \vec{k}$
then $\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$ is equal to
यदि परस्पर लंबवत वैक्टर $\vec{a}, \vec{b}, \vec{c}$ द्वारा दिए गए हैं
$\vec{a}=a_{1} \vec{i}+a_{2} \vec{j}+a_{3} \vec{k}$
$\vec{b}=b, \vec{i}+b_{2} \vec{j}+b_{3} \vec{k}$
and $\vec{C}=c_{1} \vec{i}+c_{2} \vec{j}+c_{3} \vec{k}$
फिर $\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$ के बराबर है