Find the remainder when $\left(3^{41} +7^{ 41}\right)$ is divided by 13
शेष ज्ञात करें जब $\left(3^{41} +7^{ 41}\right)$ को 13 से विभाजित किया जाता है
In a division problem, product of quotient and the remainder is 24 while their sum is 10 . If the divisor is 5 then dividend is :
Let $n !=1 \times 2 \times 3 \times \ldots \times n$ for integer $n$ greater than or equal to $1$.
If $P=1 !+(2 \times 2 !)+(3 \times 3 !)+\ldots . .+(12 \times 12 !)$, then $(P+3)$ when divided by $13 !$ leaves a remainder of:
Let $n !=1 \times 2 \times 3 \times \ldots \times n$ for integler $n$ greater than or equal to $1 .$ If $P=1 !+(2 \times 2 !)+(3 \times 3 !)+\ldots . .+(12 \times 12 !)$, then $(P+3)$ when divided by $13 !$ Leaves a remainder of:
The remainder when $\left(29^{ 29}\right)^{29} $ is divided by 9 is
$\left(29^{ 29}\right)^{29} $ को 9 से विभाजित करने पर शेषफल क्या होगा
Which least natural number when added to $7^{84} $ gives a resulting number that is divisible by 11
Which least natural number when added to $7^{\wedge} 84$ gives a resulting number that is divisible by 11
If $\mathrm{N}=\left(24^{3}+25^{3}+26^{3}+27^{3}\right)$, then $\mathrm{N}$ divided by 102 leaves a remainder of?
यदि $\mathrm{N}=\left(24^{3}+25^{3}+26^{3}+27^{3}\right)$, तो $\mathrm{N}$ को 102 से विभाजित करने पर शेषफल क्या होगा?
Find the remainder when $(7 ! \times 6 !+8 ! \times 7 !)$ is divided by $9 !$
Find the remainder when $(7 ! x 6 !+8 ! x 7 !)$ is divided by $9 !$
Enter Your Mobile No. To Login/Register
⇐ Go Back to change the mobile no.
Didn't receive OTP? Resend OTP -OR- Voice call Call Again/Resend OTP in 30 Seconds