NDA MATHEMATICS SECTIONAL TEST 2

Attempt now to get your rank among 129 students!

Question 1:

The solution set of the inequation $\frac{x+12}{x-5}>0$ is:

Question 2:

If x, p > 0 and  $x < p-4$ then which of the following is correct?

Question 3:

If $a, b$ and $c$ are real numbers such that $a < b$ and $c < 0$ then

Question 4:

If $|p-1|+|p-3| \leq 8$ then value of $p$ lies in the interval.

Question 5:

For the equation $|x|^{2}-|x|-6=0$ the roots are

Question 6:

The solution set of equation $\left|x^{2}-x-6\right|=x+2$; where $x$ is a positive real number is.

Question 7:

The number of real solutions of the equation $|x|^{2}-3|x|–4=0$ is

Question 8:

The value of $\frac{1}{\log _{2} \pi}+\frac{1}{\log _{4.5} \pi}$ is always less than.

Question 9:

The solution set of the inequality $4^{-x+0.5}-5 \cdot 2^{-x}-3<0$ is.

Question 10:

If $\mathrm{x}, \mathrm{y}, \mathrm{z}$ be three positive real numbers then the minimum value of the 

expression $ \frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}$ is:

Question 11:

Suppose $0< x_{i}<1$ for each $i \in N$
$s_{n}=x_{1}+x_{2}+x_{3}+\ldots \ldots . .+x_{n}$ then
$\left(1-x_{1}\right)\left(1-x_{2}\right)\left(1-x_{3}\right) \ldots \ldots \ldots . .\left(1-x_{n}\right)$ is

Question 12:

If 0 < x, y, z < 1 where x + y + z = 1 then the minimum value of $\frac{(1-x)(1-y)(1-z)}{x y z}$ is. 

Question 13:

If $\mathrm{p}+2>\sqrt{\mathrm{p}+4}$ then

Question 14:

If $x^{2}+2 p x+10-3 p>0$ for all $x \in R$ then

Question 15:

The solution set of $\frac{x+5}{x-2} \leq 2$ is

Question 16:

If $x$ is real then the value of $k=\frac{x^{2}+x+1}{x^{2}-x+1}$ is given by.

Question 17:

If $|x-5| \leq 2 x+7$ then $x$ lies in the interval .

Question 18:

If $3 \leqslant 3 p-15 \leqslant 18$ then $p$ lies in the interval ?

Question 19:

If $\mathrm{s}$ is the soultion set of $\mathrm{x}$ such that the in equation $\frac{3 x-1}{2 x^{3}+3 x^{2}+x}>0$ holds then $s$ contains.

Question 20:

The set of all $x$ satisfying $-x^{2}-x+12 \geqslant 0$ is.