CDS MATHEMATICS ALGEBRA QUIZ 20

Attempt now to get your rank among 1 students!

Question 1:

If $x^{4}+\frac{1}{x^{4}}=14159$, then the value of $x+\frac{1}{x}$ is:

Question 2:

If $1+4 r^{2}+16 r^{4}=256$ and $1+2 r+4 r^{2}=32$, then find the value of $\frac{1}{r} + \frac{1}{r^{2}}$.

Question 3:

If $x+\frac{1}{x}=6, x \neq 0$ then the value of $\frac{x^{4}+\frac{1}{x^{2}}}{x^{2}-3 x+1}$ is equal to:

Question 4:

If $x=16$ then, $x^{4}-17 x^{3}+17 x^{2}-17 x+17=$ ?

Question 5:

If $x+\frac{1}{x}=-2$, then the value of $x^{\mathrm{p}}+x^{\mathrm{q}}$ is:

(Where $p=$ even number $\& q=$ odd number)

Question 6:

if $(a-1)^{2}+(b+2)^{2}+(c-1)^{2}=0$ then find $2 a$ $-3 b+7 c$.

Question 7:

What is the value of $\left(x^{2}+y^{2}+z^{2}-x y-y z-\right.$ $z x)$, when $x=197, y=197$ and $z=199$.

Question 8:

What is the value of $a^{3}+b^{3}+c^{3}-3 a b c$, when $a=95, b=96$ and $c=97$.

Question 9:

If $x^{4}+x^{2} y^{2}+y^{4}=28$ and $x^{2}+x y+y^{2}=7$, then the value of $\left(\frac{1}{x^{2}}+\frac{1}{y^{2}}\right)$.

Question 10:

If $(2 x+3 y+4)(2 x+3 y-5)$ is equal to $\left(a x^{2}+\right.$ by $\left.^{2}+2 \mathrm{~h} x \mathrm{y}+2 \mathrm{~g} x+2 \mathrm{fy}+\mathrm{c}\right)$, then what is the value of $\left\{\frac{(g+f-c)}{a b h}\right\}$ ?