NDA MATHEMATICS SECTIONAL TEST 3

Attempt now to get your rank among 69 students!

Question 1:

$\int \frac{d \theta}{\sqrt{1+\sin \theta}}=\ldots \ldots$

Question 2:

Value of the integral$\int \frac{\sin x d x}{\sqrt{\cos ^{2} x+2 \cos x+2}} \text { is }$

Question 3:

$\int \frac{\sec ^{4} \theta \cdot d \theta}{\tan \theta}=$. . . . . . . . 

Question 4:

$\int \frac{x \cdot d x}{x^{4}+x^{2}+1}=$

Question 5:

Value of the indefinite integral $\int \frac{\left(x^{4}-1\right) \cdot d x}{x^{2} \sqrt{x^{4}+x^{2}+1}}$ is

Question 6:

$\int \frac{d z}{(1+\sqrt{z}) \sqrt{z-z^{2}}}=$

Question 7:

Value of the integral $\int \frac{x^{2}}{\sqrt{1+x}} \cdot d x$ will be

Question 8:

$\int \sqrt{\frac{1-x}{1+x}} \cdot d x$ equals

Question 9:

Value of the integral$\int \frac{e^{2 x}}{\left(1+e^{x}\right)} \cdot d x$ is.

Question 10:

Value of the integral$\int \frac{\sin 2 x \cdot d x}{\left(a^{2} \cos ^{2} x+b^{2} \sin ^{2} x\right)^{2}}\text { is }$

Question 11:

If $\mathrm{I}=\int \frac{\sqrt{x^{2}-a^{2}}}{x} d x$ then value of $\mathrm{I}$ will be

Question 12:

$\int \frac{\sec ^{2} x \cdot \tan x}{\sec ^{2} x-1} \cdot d x=\ldots \ldots \ldots$

Question 13:

If $\int \frac{d x}{x \sqrt{1+x^{2}}}=k\log \{f(x)\} \quad$ where $f(x)=\frac{1+\sqrt{x^{2}+1}}{x}$ then $\mathrm{k}$ equals

Question 14:

$\int \frac{d z}{\sqrt{z}+\sqrt{1+z}}=\ldots .$

Question 15:

Value of the integral $\int \frac{1-x^{2}}{\left(1+x^{2}\right)} \cdot \frac{d x}{\sqrt{1+x^{4}}}$ is

Question 16:

If $\int \frac{d x}{\left(1+x^{2}\right)^{\frac{3}{2}}}-f(x)+\mathrm{c}$; then $f(x)$ equals

Question 17:

If $\mathrm{I}=\int \frac{(t+1)^{2}}{t\left(1+t^{2}\right)} \cdot d t$ then $\mathrm{I}$ equals.

Question 18:

$\int \frac{d x}{\sqrt{(x-\alpha)(x-\beta)}}=\ldots \ldots .$

Question 19:

$\int \frac{\cos x}{\sin x+\cos x} \cdot d x$

Question 20:

$\int \frac{\sin ^{2} x d x}{(1+\cos x)^{2}}$ equals