CDS QUANT TRIGONOMETRY QUIZ 27

Attempt now to get your rank among 1 students!

Question 1:

In a triangle $A B C, A B=20 \mathrm{~cm}, \angle A B C=30^{\circ}$ and $\angle A C B=45^{\circ}$, Find the area of the triangle.

Question 2:

Two sides of triangle is $10 \mathrm{~cm}$ and $20 \mathrm{~cm}$ area is $80 \mathrm{~cm}^{2}$. Find the third side.

Question 3:

If in a triangle $\Delta \mathrm{ABC}, \operatorname{acos}^{2}\left(\frac{C}{2}\right)+\operatorname{ccos}^{2}\left(\frac{A}{2}\right)$

$=\frac{3 b}{2}$, then the side's a, b and c are.

Question 4:

In a triangle $\mathrm{ABC}, 2 \mathrm{ac} \sin \frac{1}{2}(\mathrm{~A}-\mathrm{B}+\mathrm{C})=$

Question 5:

In the given figure, find the area?

Question 6:

If the lengths of the sides of a triangle are in A.P. and the greatest angle is double the smallest, then a ratio of lengths of sides of a triangle is.

Question 7:

In the given figure, if $\mathrm{AB}=\mathrm{AC}=8 \mathrm{~cm}, \mathrm{BC}=$ $11 \mathrm{~cm}$ and $\mathrm{BD}=7 \mathrm{~cm}$, then find $\mathrm{AD}=$ ?


Question 8:

The side of triangle are $3 x+4 y, 4 x+3 y$ and $5 x+5 y$ Where $x, y>0$ then the triangle is:

Question 9:

In a $\triangle \mathrm{ABC}, \mathrm{AD}$ divides $\mathrm{BC}$ in the ratio $2: 3$, $\angle \mathrm{B}=30^{\circ}, \angle \mathrm{C}=45^{\circ} .$ Find $\frac{\sin \angle \mathrm{BAD}}{\sin \angle \mathrm{CAD}} .$

Question 10:

In a triangle $\mathrm{ABC}, \angle \mathrm{A}=30^{\circ}, \angle \mathrm{C}=90^{\circ}$, Find the ratio of side?