NDA MATHEMATICS QUIZ - 16

Attempt now to get your rank among 3 students!

Question 1:

In a triangle $\frac{2 \cos A}{a}+\frac{\cos B}{b}+\frac{2 \cos C}{c}$ $=\frac{a}{b c}+\frac{b}{a c}$ then the value of angle $\mathrm{A}$ is

Question 2:

In a triangle ABC , if $(s-b)(s-c)=s(s-a)$ then the angle $A$ is equal to

Question 3:

In a triangle $\mathrm{ABC}$, if $\mathrm{C}=90^{\circ}$, then $\frac{a^{2}+b^{2}}{a^{2}-b^{2}} \sin (A-B)=\ldots \ldots .$

Question 4:

In a triangle ABC,  $\frac{\cos 2 B}{b^{2}}-\frac{\cos 2 C}{c^{2}}$  =  . .  . .  . . . . 

Question 5:

In $\mathrm{a}$ triangle $\mathrm{ABC} \ \; \mathrm{b}=4$ and $\frac{\cos A}{a}=\frac{\cos B}{b}=\frac{\cos C}{c}$ then area of triangle $\mathrm{ABC}$ is.

Question 6:

Area  of a triangle ABC is given by $\Delta=\mathrm{b}^{2}$ $-(\mathrm{c}-\mathrm{a})^{2}$ then $\tan \frac{B}{2}$ is equal to

Question 7:

If $c \cos ^{2} \frac{A}{2}+a \cos ^{2} \frac{C}{2}=\frac{3 b}{2}$ then $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in

Question 8:

In a triangle if $(a+b+c)(a+b-c)=\lambda a b$ then

Question 9:

In a triangle ABC,  $\cos \mathrm{B}=\frac{\sin A}{2 \sin C}$. then $\triangle A B C$ is

Question 10:

If $\cos A+\cos C=4 \sin ^{2} \frac{B}{2}$ then sides of the triangle are in