Value of the integral $\int \frac{x^{2} d x}{(x \cos x-\sin x)^{2}}$ will be
$\int \frac{x^{2} d x}{(x \cos x-\sin x)^{2}}$ का मान क्या होगा ?
Value of the integral $\int \frac{x-1}{x+1} \frac{d x}{\sqrt{x\left(x^{2}+x+1\right)}}$ will be
दिया गया अनुकलन $\int \frac{x-1}{x+1} \frac{d x}{\sqrt{x\left(x^{2}+x+1\right)}}$ =
$I=\int \frac{\sin x d x}{\sqrt{\left(a \cos ^{2} x+b \sin ^{2} x\right)}}$= . . . . . . .
$I=\int \frac{\sin x d x}{\sqrt{\left(a \cos ^{2} x+b \sin ^{2} x\right)}}$ =. . . . . . . . . . .
$\int \frac{\left(x^{2}+1\right) d x}{x \sqrt{1+x^{4}}}$ equals
$\int \frac{\left(x^{2}+1\right) d x}{x \sqrt{1+x^{4}}}$ =
If $\int \frac{\cos x d x}{2 \sin x+3 \cos x}=c_{1} x+c_{2} f(x)$ then $f(x)$ equals
यदि $\int \frac{\cos x d x}{2 \sin x+3 \cos x}=c_{1} x+c_{2} f(x)$ तो $f(x)$ किसके बराबर होगा ?
Value of the integral $\int(\log x)^{2} d x$ will be
$\int(\log x)^{2} d x$ =
$\int \frac{d x}{2+\cos x}=$
$\int \frac{x d x}{1+\sin x}=$__________
$\int \sec ^{-1} \sqrt{x} \cdot d x=$_________
$\int \sec ^{-1} \sqrt{x} \cdot d x=$ ___________
If $\int \frac{x+1}{\sqrt{2 x-x^{2}}} d x=-f(x)+k \sin ^{-1}(x-1)$ then $\mathrm{k}=$ _________
यदि $\int \frac{x+1}{\sqrt{2 x-x^{2}}} dx=-f(x)+k \sin ^{-1}(x–1)$ तो $ \mathrm{k}=$ _________
Enter Your Mobile No. To Login/Register
⇐ Go Back to change the mobile no.
Didn't receive OTP? Resend OTP -OR- Voice call Call Again/Resend OTP in 30 Seconds