If $\sum_{k=1}^{2 k} \sin ^{-1} x_{k}=k \pi$ then $\sum_{k=1}^{2 k} x_{k}$ is
अगर $\sum_{k=1}^{2 k} \sin ^{-1} x_{k}=k \pi$ तो $\sum_{k=1}^{2 k} x_{k}$ = . . . . . . . . . . .
Value of $\cot \left(\sin ^{-1} \frac{3}{5}+\cot ^{-1} \frac{3}{2}\right)$ is
$\cot \left(\sin ^{-1} \frac{3}{5}+\cot ^{-1} \frac{3}{2}\right)$ का मान क्या होगा ?
$\tan ^{-1} x+\tan ^{-1} y+\tan ^{-1} z=\frac{\pi}{2}$ then
यदि $\tan ^{-1} x+\tan ^{-1} y+\tan ^{-1} z=\frac{\pi}{2}$ तब
If $x=\tan ^{-1} \frac{1}{7}+\tan ^{-1} \frac{1}{8}+\cot ^{-1} 18$ then $\cot x$ is equal to
अगर $x=\tan ^{-1} \frac{1}{7}+\tan ^{-1} \frac{1}{8}+\cot ^{-1} 18$ तो $\cot x $ का मान किसके बराबर होगा ?
The number of solutions of $\sin ^{-1} x=2 \tan ^{-1} x $ is
$\sin ^{-1} x=2 \tan ^{-1} x$ के समाधानो की संख्या क्या होगा ?
$\tan ^{-1}\left(\frac{\cos \theta}{1+\sin \theta}\right)=\ldots . . ;-\frac{\pi}{2} \leq \theta \leq \frac{3 \pi}{2}$
If $\cos ^{-1} \frac{a}{2}+\cos ^{-1} \frac{b}{3}=\mathrm{t}$ then $9 a^{2}-12 a b \cos t+4 b^{2}$ is equal to
अगर $\cos ^{-1} \frac{a}{2}+\cos ^{-1} \frac{b}{3}=\mathrm{t}$ हो तब $9 a^{2}-12 ab \cos t+4 b^{2}$ =
If $\cos ^{-1} \alpha+\cos ^{-1} \beta+\cos ^{-1} \gamma=\pi$; then $\alpha^{2}+\beta^{2}+\gamma^{2}+2 \alpha \beta \gamma$ equals
अगर $\cos ^{-1} \alpha+\cos ^{-1} \beta+\cos ^{-1} \gamma=\pi$ हो तब $\alpha^{2}+\beta^{2}+\gamma ^{2}+2 \alpha \beta \gamma$ =
The number of solution for which the equation $\sin ^{-1} x=\cos ^{-1} x+\sin ^{-1}(5 x-3)$ holds is
समीकरण $\sin ^{-1} x=\cos ^{-1} x+\sin ^{-1}(5 x-3)$ के समाधानो की संख्या क्या होगी ?
If $\cot ^{-1} \frac{x-2}{x-1}+\cot ^{-1} \frac{x+2}{x+1}=\cot ^{-1}(1)$ then $x=......$
अगर $\cot ^{-1} \frac{x-2}{x-1}+\cot ^{-1} \frac{x+2}{x+1}=\cot ^{-1}( 1)$ तो $x=......$
Enter Your Mobile No. To Login/Register
⇐ Go Back to change the mobile no.
Didn't receive OTP? Resend OTP -OR- Voice call Call Again/Resend OTP in 30 Seconds