$\cos 36^{\circ} \cdot \cos 72^{\circ} \cdot \cos 108^{\circ} \cdot \cos 144^{\circ}=\ldots$
$\tan 22 \frac{1}{2}^{\circ}$ equals:
$\tan 22 \frac{1}{2}^{\circ}$ =:
$(\cos \alpha-\cos \beta)^{2}+(\sin \alpha+\sin \beta)^{2}=\ldots \ldots$
$\frac{\sin A+\sin B-\sin (A+B)}{\sin A+\sin B+\sin (A+B)}$ = . . . . . .
$\frac{\sin A+\sin B-\sin (A+B)}{\sin A+\sin B+\sin (A+B)}$
$\sqrt{2+\sqrt{2+2 \cos 4 x}}$ is equal to.
$\sqrt{2+\sqrt{2+2 \cos 4 x}}$ =
$\cos ^{2} 73^{\circ}+\cos ^{2} 47^{\circ}+\cos 73^{\circ} \cdot \cos 47^{\circ}=\ldots .$
If $\sin 5 \theta=a \sin ^{5} \theta+b \sin ^{3} \theta+c \sin \theta$ then
अगर $\sin 5 \theta=a \sin ^{5} \theta+b \sin ^{3} \theta+c \sin \theta$ तो
$\frac{4 \tan ^{3} \theta}{1-\tan ^{4} \theta}$ equals:
$\frac{4 \tan ^{3} \theta}{1-\tan ^{4} \theta}$ =
If $\cos x=\frac{1}{2}\left(m+\frac{1}{m}\right)$ then $\cos 3 \theta$ equals
अगर $\cos x=\frac{1}{2}\left(m+\frac{1}{m}\right)$ तो $\cos 3 \theta$ का मान क्या होगा ?
Enter Your Mobile No. To Login/Register
⇐ Go Back to change the mobile no.
Didn't receive OTP? Resend OTP -OR- Voice call Call Again/Resend OTP in 30 Seconds