Value of $\int_{0}^{\frac{\pi}{2}} \cos x \cdot e^{\sin x} \cdot d x$ is
$\int_{0}^{\frac{\pi}{2}} \cos x \cdot e^{\sin x} \cdot d x$ का मान क्या होगा ?
If $I_{n}=\int_{0}^{\frac{\pi}{4}} \tan ^{n} x d x$ then for any positive integer $\mathrm{n}$, The value of $L_{n \rightarrow \infty} n\left(\mathrm{I}_{n}+\mathrm{I}_{n}-2\right)$ is equal to
यदि $I_{n}=\int_{0}^{\frac{\pi}{4}} \tan ^{n} x d x$ तब किसी धनात्मक पूर्णांक $\mathrm{n}$, के लिए $L_{n \rightarrow \infty} n\left(\mathrm{I}_{n}+\mathrm{I}_{n}-2\right)$ का मूल्य किसके बराबर है ?
$\int_{-2}^{2}|x| d x=$ . . . . . . . .
$\int_{0}^{\pi}|\cos \theta-\sin \theta| d \theta$ equals
$\int_{0}^{\pi}|\cos \theta-\sin \theta| d \theta$ =. . . . . . . .
If $\int_{0}^{\pi} x f(\sin x) d x=k \int_{0}^{\frac{\pi}{2}} f(\sin x) d x$ then $\mathrm{k}$ equals
यदि $\int_{0}^{\pi} x f(\sin x) d x=k \int_{0}^{\frac{\pi}{2}} f(\sin x) d x$ तो $\mathrm{k}$ का मान क्या होगा ?
$\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{\frac{3}{2}} x \cdot d x}{\cos ^{\frac{3}{2}} x+\sin ^{\frac{3}{2}} x}=\ldots \ldots$
$\int_{0}^{1-5}\left[x^{2}\right] d x=\ldots$
Value of the integral $\int_{1}^{\sqrt{e}} t \log d t$ is
$\int_{1}^{\sqrt{e}} t \log d t$ का मान क्या होगा ?
$\int_{0}^{\pi} \frac{x d x}{a^{2} \cos ^{2} x+b^{2} \sin ^{2} x}=\ldots \ldots \ldots ?$
If $\int_{0}^{\infty} \frac{\log \left(1+x^{2}\right) d x}{1+x^{2}}=\pi \log \mathrm{k}$ then $\mathrm{k}$ equals
अगर $\int_{0}^{\infty} \frac{\log \left(1+x^{2}\right) dx}{1+x^{2}}=\pi \log \mathrm{k }$ तो $\mathrm{k}$ का मान क्या होगा ?
Enter Your Mobile No. To Login/Register
⇐ Go Back to change the mobile no.
Didn't receive OTP? Resend OTP -OR- Voice call Call Again/Resend OTP in 30 Seconds