NDA MATHEMATICS QUIZ - 27

Attempt now to get your rank among 9 students!

Question 1:

If $\mathrm{x}=\mathrm{a} \cos ^{3} \theta ; \mathrm{y}=\mathrm{a} \sin ^{3} \theta$ , then $\frac{d y}{d x}$ at $\theta=\frac{\pi}{4}$ will be

Question 2:

If $x=a(\cos \theta+\theta \sin \theta) ; \quad y=(a \sin \theta-\theta \cos \theta)$ then $\frac{d^{2} y}{d x^{2}}$ will be equal to

Question 3:

If $\sin x=\frac{2 t}{1+t^{2}} ; \tan y=\frac{2 t}{1-t^{2}} \quad$ then $\frac{d y}{d x}$ equals

Question 4:

If $x=\frac{3 a t}{1+t^{3}} ; y=\frac{3 a t^{2}}{1+t^{2}}$ then $\frac{d y}{d x}$ at $t=\frac{1}{2}$ equal is:

Question 5:

If $x=\frac{2 t}{1+t^{2}}, \quad y=\frac{1-t^{2}}{1+t^{2}}$ then $\frac{d y}{d x}$ equals

Question 6:

If $x=a(t-\sin t)$ and $y=a(1-\cos t)$ and $\frac{d^{2} y}{d x^{2}}=k \frac{1}{\sin ^{4} \frac{t}{2}}$ where $\mathrm{k}$ will be equal to

Question 7:

If $y=\tan \left(\frac{1}{2} \cos ^{-1} \frac{1-t^{2}}{1+t^{2}}+\frac{1}{2} \sin ^{-1} \frac{2 t}{1+t^{2}}\right)$ $; 0 \leq t \leq 1$ and $x=\frac{2 t}{1-t^{2}}$ then $\frac{d y}{d x}=\ldots \ldots$

Question 8:

If $y=\tan ^{-1} \frac{\sqrt{1+t^{2}}-1}{t}$ and $x=\tan ^{-1} t$ then $\frac{d y}{d x}=. .$

Question 9:

If $\mathrm{u}=\tan ^{-1}\left(\frac{x}{\sqrt{1-x^{2}}}\right)$ and $\mathrm{v}=\cos ^{-1}\left(2 x^{2}-1\right)$ then $\frac{d u}{d v}=\ldots \ldots$

Question 10:

If $x=3 \cos \theta-\cos ^{3} \theta, y=3 \sin \theta-\sin ^{3} \theta$ then $\frac{d^{2} y}{d x^{2}}=\ldots$