Practice questions here, for every subject and every exam. Unlimited questions for unlimited attempts, given with answers and explanations.
If a right circular cone of height $24 \mathrm{~cm}$ has the volume $\frac{17600}{7} \mathrm{~cm}^3$, then its radius is:
We know
Volume of cone $=\frac{1}{3} \pi r^2 h$
Here, r = radius of the cone, h = height of the cone
According to Question
$\frac{17600}{7}=\frac{1}{3} \times \frac{22}{7} \times r^2 \times 24$
$r^2=\frac{800 \times 3}{24}$
$\mathrm{r}=\sqrt{100}$
$\mathrm{r} \quad=10 \mathrm{~cm}$
The heights of two right circular cones are in the ratio $1: 5$ and the perimeter of their bases are in the ratio $5: 3$. Find the ratio of their volumes.
$h 1: h 2=1: 5$
Perimeter of their base
$\frac{2 \pi r_1}{2 \pi r_2}=\frac{5}{3}$
$\frac{r_1}{r_2}=\frac{5}{3}$
Ratio of volume
$\frac{\pi r_1^2 h_1}{\pi r_2^2 h_2}=\frac{5 \times 5 \times 1}{3 \times 3 \times 5}=\frac{5}{9}$
How many small solid spheres of radius $5 \mathrm{~mm}$ can be made from a solid metallic cone of base radius $21 \mathrm{~cm}$ and height of $40 \mathrm{~cm}$?
Radius of cone $=21 \mathrm{~cm}=210 \mathrm{~mm}$
and height of cone $=40 \mathrm{~cm}=400 \mathrm{~mm}$
Clearly,
Required number of spheres
$=\frac{\frac{1}{3} \times \pi \times 210 \times 210 \times 400}{\frac{4}{3} \times \pi \times 5 \times 5 \times 5}$
$=\frac{210 \times 210 \times 400}{4 \times 5 \times 5 \times5}$
$=35280$
A hollow cylinder is made up of steal. The difference in its outer and inner CSA is 132 $\mathrm{cm}^{2}$. Height of cylinder is $21 \mathrm{~cm}$ and sum of its inner and outer radius is also $21 \mathrm{~cm}$. Then find the TSA of the hollow cylinder (in $\mathrm{cm}^{2}$ )
We have,
$\begin{aligned}
&2 \pi \mathrm{h}(\mathrm{R}-\mathrm{r})=132 \\
&\Rightarrow 2 \times \frac{22}{7} \times 21(\mathrm{R}-\mathrm{r})=132 \\
&\Rightarrow \mathrm{R}-\mathrm{r}=1 \\
&\text { Also, } \mathrm{R}+\mathrm{r}=21 \mathrm{~cm} \text { (given) } \\
&\Rightarrow \mathrm{R}=11 \mathrm{~cm}, \mathrm{r}=10 \mathrm{~cm}
\end{aligned}$
So, TSA of hollow cylinder $=2 \pi \mathrm{h}(\mathrm{R}+\mathrm{r})+2 \pi$
$\begin{aligned}
&\left(R^{2}-r^{2}\right) \\
&=2 \times \frac{22}{7} \times 21 \times 21+2 \times \frac{22}{7} \times 21 \\
&=2 \times \frac{22}{7} \times 21[21+1] \\
&=6 \times 22 \times 22=2904 \mathrm{~cm}^{2}
\end{aligned}$
A rectangular lawn of length $30 \mathrm{~m}$ and breadth $15 \mathrm{~m}$ is to be surrounded externally by a path which is $3 \mathrm{~m}$ wide. Find the cost of making the path at the rate of Rs.20 per $\mathrm{m}^{2}$.
Area along the length $=2 \times(30 \times 3)=180 \mathrm{~m}^{2}$
Area along the breadth $=2 \times(15 \times 3)=90 \mathrm{~m}^{2}$
Area of 4 corner squares $=4 \times(3)^{2}=36 \mathrm{~m}^{2}$
Area of path $=180+90+36$
$=306 \mathrm{~m}^{2}$
Cost $=306 \times 20 = 6120$ rupees
Alternate method:
Area of path $=($ Perimeter of rectangle $) \times$ breadth
of path $+4 \times(\text { breadth of path })^{2}$
$=[2 \times(30+15)] \times 3+4 \times(3)^{2}$
$=306 \mathrm{~m}^{2}$
Cost $=306 \times 20 = 6120$ rupees
PQRS is a rectangle. The ratio of the sides PQ and $Q R$ is $4: 3$. If the length of the diagonal $\mathrm{PR}$ is $20 \mathrm{~cm}$, then what is the area (in $\mathrm{cm}^{2}$ ) of the rectangle?
PQRS is a rectangle
$\mathrm{PR}=20$ given
$\mathrm{PQ}: \mathrm{QR}=4: 3$
In $\triangle \mathrm{PQR}$
$16 x^{2}+9 x^{2}=400$
$25 x^{2}=400$
$x^{2}=16$
Area of rectangle $=4 x \times 3x$
$=12 x^{2}$
$=12 \times 16=192$
A field is in the form of a rectangle of length $18 \mathrm{~m}$ and width $15 \mathrm{~m}$ deep, in a corner of the field a pit is dug of area $7.5 \times 6$ and $0.8 \mathrm{~m}$ deep and the earth taken out is evenly spread over the remaining area of the field. The level of the field raised is:
Area of field $\Rightarrow \quad 18 \times 15=270$
Area of pit $\Rightarrow \quad 7.5 \times 6=45$
Area of remaining field $=270-45=225$
$\mathrm{H}=\frac{7.5 \times 6 \times 0.8}{225}=0.16=16 \mathrm{~cm}$
A copper sphere of diameter $18 \mathrm{~cm}$ is drawn into a wire of diameter $4 \mathrm{~mm}$. The length of the wire, in metre is:
Volume of copper $=$ Volume of wire
$\frac{4}{3} \pi \times 9 \times 9 \times 9=\pi \times \frac{2}{10} \times \frac{2}{10} \times h$
$\mathrm{h}=243 \mathrm{~m}$
What is the ratio of the area of an equilateral triangle of side 2a units to that of a square, whose diagonal is 2a units?
Given
Side of equilateral triangle = 2a
Diagonal of square = 2a
We know that,
Diagonal of square is $\sqrt{2} a^{\prime}$.
$\sqrt{2} a^{\prime}=2 a$
$a^{\prime}=\frac{2 a}{\sqrt{2}}$
$\left(a^{\prime}\right)^2=(\sqrt{2} a)^2=2 a^2$
then,
Area of equilateral triangle $=\frac{\sqrt{3} a^2}{4}=\frac{\sqrt{3}(2 a)^2}{4}=\sqrt{3} a^2$
Area of square $=\left(a^{\prime}\right)^2=(\sqrt{2} a)^2=2 a^2$
Ratio $=\frac{\text { area of an equilateral triangle }}{\text { area of a square }}$
Ratio $=\frac{\sqrt{3} a^2}{2 a^2}=\frac{\sqrt{3}}{2}$
Ratio $=\frac{\text { curved surface area of cylinder }}{\text { total surface area of cylinder }}$
$\frac{2}{3}=\frac{2 \pi r h}{2 \pi r(h+r)}$
$\frac{2}{3}=\frac{h}{h+r}$
$2 h+2 r=3 h$
$2 r=h$
$\frac{r}{h}=\frac{1}{2}$
The diameter of the base of a right circular solid cylinder is $14 \mathrm{~cm}$ and its volume is $2002 \mathrm{~cm}^3$. The total surface area of the cylinder (in $\mathrm{cm}^2$ ) is $\left(\right.$ Take $\pi=\frac{22}{7}$ ).
Given
Diameter $=14 \mathrm{~cm}$ Radius $=\frac{d}{2}=\frac{14}{2}=7 \mathrm{~cm}$
Volume of Cylinder $=2002$
So,
$
\begin{aligned}
& \pi r^2 h=2002 \\
& \frac{22 \times 7 \times 7 \times h}{7}=2002 \\
& h=13 \mathrm{~cm}
\end{aligned}
$
Lateral surface area of cylinder $=2 \pi r(r+h)$
$
=\frac{2 \times 22 \times 7(7+13)}{7}=880 \mathrm{~cm}^2
$
The length, breadth and height of a cuboid are in the ratio $1: 2: 3$. If its total surface area is $1100 \mathrm{~cm}^2$, then its volume (in $\mathrm{cm}^3$ ) is :
Ratio of sides is 1:2:3
Let side of cuboid are 1x, 2x & 3x
Total Surface area of cuboid = 2(lb+bh+hl)
$1100=2(1 x \times 2 x+2 x \times 3 x+3 x \times 1 x)$
$1100=2\left(11 x^2\right)$
$
x=5 \sqrt{2}
$
Volume of cuboid=lbh
$5 \sqrt{2} \times 10 \sqrt{2} \times 15 \sqrt{2}=1500 \sqrt{2}$
A solid cube of volume $46656 \mathrm{~cm}^3$ is cut into 8 cubes of equal volumes. What is the ratio of surface area of the original cube and the total surface areas of the smaller 8 cubes?
Volume of solid cube $\left(A^3\right)=8 \times$ Volume of small cubes $\left(a^3\right)$
$\Rightarrow 46656=8 \times a^3$
$\Rightarrow$ $a^3=5832$
$\Rightarrow$ $a=18$
Side of the small cube is 18
Side of original cube $=\sqrt[3]{46656}=36$
Ratio $=\frac{\text { Surface area of original cube }}{\text { total surface areas of the smaller } 8 \text { cubes }}$
$\frac{6 A^2}{8 \times 6 a^2}=\frac{6 \times 36 \times 36}{8 \times 6 \times 18 \times 18}=\frac{1}{2}$
A circular cylindrical can (having horizontal base) with internal diameter $20 \mathrm{~cm}$ and height $30 \mathrm{~cm}$ contains water to a height of $5 \mathrm{~cm}$. How many metal spheres of radius $5 \mathrm{~cm}$ have to be placed in the can, so that the water just fills up the can?
Number of spheres $=\frac{\pi \times(10)^{2} \times 25}{\pi \frac{4}{3}(5)^{3}}=15$
The sides of a triangle are in the ratio $2: 3: 4$ The perimeter of the triangle is $18 \mathrm{~cm}$. The area of the triangle is?
Let side of triangle is 2x, 3x and 4x.
$\Rightarrow \quad 2 x+3 x+4 x=18$
$\Rightarrow \quad 9 x=18$
$x=2$
length of three sides,
$4 \mathrm{~cm}, 6 \mathrm{~cm}, 8 \mathrm{~cm}$
$s=\frac{4+6+8}{2}=9$
Area of triangle
$=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{9 \times 5 \times 3 \times 1}$
$=3 \sqrt{15} \mathrm{~cm}^{2}$
A solid sphere of radius $2 \mathrm{~cm}$ is melted to convert in to a wire of length is $100 \mathrm{~cm}$. The radius of the wire.
ATQ
Volume of sphere = volume of wire
$\Rightarrow$ $\frac{4}{3} \times \pi \times(2)^{3}$ = $\pi \times(r)^{2} \times 100$
$\Rightarrow$ $\frac{4}{3} \times \pi \times 8=$ $\pi \times r^{2} \times 100$
r = 0.33 cm
Find the total surface area of a sphere whose radius is $63 \mathrm{~cm}$.
Radius of the sphere, $r=63 \mathrm{~cm}$
Total surface area of the sphere $=4 \pi r^2$
$=4 \times \frac{22}{7} \times 63 \mathrm{~m} \times 63 \mathrm{~m}$
$=88\times 9 \mathrm{~m} \times 63 \mathrm{~m}$
$=49896 \mathrm{~m}^2$
A cuboid of mercury, measuring 40 cm $\times 20$ cm $\times 16$ cm, is melted to form spheres of diameter $10$ cm. How many balls will be made in this way? (in approximation)
Radius of each sphere $=\frac{\text { Diameter }}{2}=\frac{10}{2} = 5\mathrm{~cm}$
$\text { Number of balls }=\frac{\text { Volume of cuboid }}{\text { Volume of each sphere ball }}$
$=\frac{\text { length } \times \text { breadth } \times \text { height }}{\frac{4 \pi}{3} \times \text { radius }^3} $
$=\frac{40 \times 20 \times 16}{\frac{4}{3} \times \frac{22}{7} \times\left(5\right)^3}=24.436∼24$
A race track is in the shape of a ring whose inner and outer circumference are $440 \mathrm{~m}$ and $506 \mathrm{~m}$, respectively. What is the cost of levelling the track at 6/sq.m? $\left(\pi=\frac{22}{7}\right)$
Let internal and external radius of the track be r and R respectively.
Internal circumference of the track $=2 \pi r$
$2 \pi r=440 $
$\Rightarrow 2 \times(22 / 7) \times r=440 $
$\Rightarrow r=70 m$
External circumference of the track $=2 \pi R$
$2 \pi R=506 $
$\Rightarrow 2 \times(22 / 7) \times R=506$
$\Rightarrow R=506 \times(7 / 44)$
$\Rightarrow R=80.5 \mathrm{~m}$
Area of track $=\pi\left(R^2-r^2\right)=(22 / 7) \times\left(80.5^2-70^2\right)=22 / 7 \times 150.5 \times 10.5=4966.5 \mathrm{~m}^2$
Cost of levelling $1 \mathrm{~m}^2=$ Rs. 6
$\therefore$ Cost of levelling $4966.5 \mathrm{~m}^2=4966.5 \times 6=$ Rs. 29,799
A rectangular piece of paper is $22 \mathrm{~cm}$ long and $10 \mathrm{~cm}$ wide is rolled along its length and a cylinder is formed. Find the volume of the cylinder.(take $\pi=22 / 7$ )
Length of the rectangular paper will be height of the cylinder and width of the rectangular paper is circumference of the cylinder
$\therefore 2 \pi \mathrm{r}=10 \mathrm{~cm} \text { and } \mathrm{h}=22 \mathrm{~cm}$
Volume of the cylinder $=\pi r^2 \mathrm{~h} $
$\frac{22}{7} \times \frac{10}{2 \pi} \times \frac{10}{2 \pi} \times 22 \mathrm{~cm}^3 $
$=\frac{22}{7} \times \frac{10}{2} \times \frac{7}{22} \times \frac{10}{2} \times \frac{7}{22} \times 22 \mathrm{~cm}^3$
$=175 \mathrm{~cm}^3$