Practice questions here, for every subject and every exam. Unlimited questions for unlimited attempts, given with answers and explanations.
$\frac{3^{n+2}-3^{n}}{3^{n+1}+3^{n}}=\frac{3^{n} \cdot 9-3^{n}}{3^{n} \cdot 3+3^{n}}=\frac{9-1}{3+1}=\frac{8}{4}=2$
$\begin{aligned}\left(-\frac{1}{512}\right)^{-2 / 3} &=(-512)^{2 / 3} \\ &=\left(-8^{3}\right)^{2 / 3}=(-8)^{2}=64 \end{aligned}$
$3 \sqrt{3} \times 3^{3} \div 3^{-3 / 2}=3^{a+2}$
$\Rightarrow \quad \frac{3 \cdot 3^{1 / 2} \cdot 3^{3}}{3^{-3 / 2}}=3^{a+2}$
$\Rightarrow \quad 3 \cdot 3^{1 / 2} \cdot 3^{3} \cdot 3^{3 / 2}=3^{a+2}$
$\Rightarrow \quad 3^{1+1 / 2+3+3 / 2}=3^{a+2}$
$\Rightarrow \quad 3^{6}=3^{a+2}$
$\Rightarrow \quad 6=a+2 \Rightarrow a=4$
$\begin{aligned} \frac{2^{\frac{2}{3}} \times \sqrt[3]{2^{7}}}{\sqrt[3]{2^{6}}} &=\frac{2^{\frac{2}{3}} \times 2^{\frac{7}{3}}}{2^{\frac{6}{3}}}=2^{\left(\frac{2}{3}+\frac{7}{3}-\frac{6}{3}\right)} \\ &=2^{\left(\frac{2+7-6}{3}\right)}=2^{\frac{3}{3}}=2^{1}=2 \end{aligned}$
$\frac{\left(x^{3}\right)^{2} \times x^{4}}{x^{10}}=x^{p}$
$\Rightarrow \quad \frac{x^{6} \times x^{4}}{x^{10}}=x^{p}$
$\Rightarrow \quad \frac{x^{10}}{x^{10}}=x^{p}$
$\Rightarrow \quad x^{p}=x^{0}$
$\Rightarrow \quad p=0$
$(27)^{1 / 3} \times(81)^{-1 / 2}=3^{n}$
$\Rightarrow \quad\left(3^{3}\right)^{1 / 3} \times\left(3^{4}\right)^{-1 / 2}=3^{n}$
$\Rightarrow \quad 3 \times 3^{-2}=3^{n}$
$\Rightarrow \quad 3^{-1}=3^{n}$
$\Rightarrow \quad n=-1$
$\begin{aligned} \frac{2^{n+4}-2 \cdot 2^{n}}{2 \cdot 2^{n+3}}+2^{-3} &=\frac{2^{n} \cdot 2^{4}-2 \cdot 2^{n}}{2 \cdot 2^{n} \cdot 2^{3}}+\frac{1}{2^{3}} \\ &=\frac{2^{n}(16-2)}{2^{n}(16)}+\frac{1}{8} \\ &=\frac{14}{16}+\frac{1}{8}=\frac{14+2}{16}=\frac{16}{16}=1 \end{aligned}$
If $x=7-4 \sqrt{3}$ find the value of $\frac{1}{x} ?$
$x=7-4 \sqrt{3}$
If the difference of the square of number is 1 then the reciprocal of that number be same with sign change
$\frac{1}{x}=7+4 \sqrt{3}$
Which of the following relation is correct
$A=\sqrt[3]{2}, B=\sqrt{3}, C=\sqrt[4]{4}$
$A=\sqrt[3]{2}, \ldots$B$=\sqrt{3}, \ldots C=\sqrt[4]{4}$
$A=(2)^{\frac{1}{3}}, B=(3)^{\frac{1}{2}}, C=(4)^{\frac{1}{4}}$
LCM of $(3,2$ and 4$)=12$
$A=(2)^{\frac{4}{12}}, B=(3)^{\frac{6}{12}}, C=(4)^{\frac{3}{12}}$
$A=\sqrt[12]{2^{4}}, B=\sqrt[12]{3^{6}}, C=\sqrt[12]{4^{3}}$
$A=\sqrt[12]{16}, B=\sqrt[12]{729}, C=\sqrt[12]{64}$
$B>C>A$
Which one is smaller out of $\sqrt[4]{5}, \sqrt[4]{9}, \sqrt[3]{7}, \sqrt{3}$
$\sqrt[4]{5}, \sqrt[4]{9}, \sqrt[3]{7}, \sqrt{3}$
Take LCM of 4 , and $3=12$
$\sqrt[12]{5^{3}}, \sqrt[12]{9^{3}}, \sqrt[12]{7^{4}}, \sqrt[12]{3^{6}}$
The smaller number is $\sqrt[4]{5}$
$3^{2^{x}}=81^{2^{3 x}}$, then $x$ is equal to
$3^{2^{x}}=81^{2^{3 x}}$
$3^{2^{x}}=\left(3^{4}\right)^{2^{3 x}}$
$3^{2^{x}}=3^{4 \times 2^{3 x}}$
$3^{2^{x}}=3^{2^{2} \times 2^{3 x}}$
$3^{2^{x}}=3^{2^{2+3x}}$
$ x=2+3 x$
$x=-1$
If $3^{a}=9^{b}=27^{c}$ and $a b c=288$ find the value of $\frac{1}{3 a}+\frac{1}{5 b}+\frac{1}{7 c}$
$3^{a}=9^{b}=27^{c}$
$3^{a}=3^{2 b}=3^{3 c}$
$a=2 b=3 c$
$a=3 c$
$2 b=3 c$
$b=\frac{3 c}{2}$
$a b c=288$
Put the value of $a, b$ in $c$ form
$3 c \times \frac{3 c}{2} \times c=288$
$c^{3}=32 \times 2$
$c=4$
Then $a=3 c=4 \times 3=12$
$
b=\frac{3 c}{2}=\frac{3 \times 4}{2}=6
$
So,
$\frac{1}{3 a}+\frac{1}{5 b}+\frac{1}{7 c}$
$\frac{1}{3 \times 12}+\frac{1}{5 \times 6}+\frac{1}{7 \times 4}$
$\frac{1}{36}+\frac{1}{30}+\frac{1}{28}$
$\frac{35}{1260}+\frac{42}{1260}+\frac{45}{1260}=\frac{122}{1260}=\frac{61}{630}$
Find the value of given expression:
$\left(x^{\mathrm{a}-\mathrm{b}}\right)^{l} \times\left(x^{\mathrm{b}-\mathrm{l}}\right)^{\mathrm{a}} \times\left(\mathrm{a}^{l-\mathrm{a}}\right)^{\mathrm{b}}=?$
$\begin{aligned} &\left(x^{\mathrm{a}-\mathrm{b}}\right)^{l} \times\left(x^{\mathrm{b}-\mathrm{l}}\right)^{\mathrm{a}} \times\left(\mathrm{a}^{l-\mathrm{a}}\right)^{\mathrm{b}} \\=&\left(x^{\mathrm{a}-\mathrm{b}}\right)^{l} \times\left(x^{\mathrm{b}-l}\right)^{\mathrm{a}} \times\left(\mathrm{x}^{l-\mathrm{a}}\right)^{\mathrm{b}} \\=& x^{\mathrm{a} l-\mathrm{b} l} \times x^{\mathrm{ba}-l a} \times x^{\mathrm{lb}-\mathrm{ab}} \\=& x^{\mathrm{a} l-\mathrm{b} l+\mathrm{ba}-\mathrm{la}+\mathrm{lb}-\mathrm{ab}} \\=& x^{0}=1 \end{aligned}$
The value of $x=\sqrt{12+\sqrt{12+\sqrt{12+\cdots \ldots \infty}}}$ is :
When a number is written like this and is positive. Then divide the number into two factors such that
In which the difference is only one and also the factor which is larger. That is our answer.
$x=\sqrt{12+\sqrt{12+\sqrt{12+\cdots \infty}}}$
If the number is positive, we take a larger factor.
$=\sqrt{3 \times 4}$
4
Which of the following is the least?
$\sqrt{5}, \sqrt[3]{3}, \sqrt[3]{9}, \sqrt[3]{4}$
$\sqrt{5}, \sqrt[3]{3}, \sqrt[3]{9}, \sqrt[3]{4}$
(5) $^{\frac{1}{2}},(3)^{\frac{1}{3}},(9)^{\frac{1}{3}},(4)^{\frac{1}{3}}$
LCM of 2 , and $3=6$
$(5)^{\frac{3}{6}},(3)^{\frac{2}{6}},(9)^{\frac{2}{6}},(4)^{\frac{2}{6}}$
$\sqrt[6]{5^{3}}, \sqrt[6]{3^{2}}, \sqrt[6]{9^{2}}, \sqrt[6]{4^{2}}$
$\sqrt[6]{125}, \sqrt[6]{9}, \sqrt[6]{81}, \sqrt[6]{16}$
The least number is $\sqrt[3]{3}$.
The simplified form of $(36)^{\frac{3}{2}}+(196)^{\frac{1}{2}}$ is:
$(36)^{\frac{3}{2}}+(196)^{\frac{1}{2}}$
$(36)^{\frac{3}{2}}+(196)^{\frac{1}{2}}$
$6^{2 \times \frac{3}{2}}+14^{2 \times \frac{1}{2}}$
$216+14$
230
If $x=\sqrt[3]{x^{2}+5}-2$, then the value of $x^{3}+5 x^{2}+12 x$ is-
$x=\sqrt[3]{x^{2}+5}-2$
$x+2=\sqrt[3]{x^{2}+5}$
On cubing both sides, we get
$x^{3}+8+6 x^{2}+12 x=x^{2}+5$
$x^{3}+5 x^{2}+12 x=-3$
If $\sqrt{\sqrt{6 \sqrt{6 \sqrt{6 \sqrt{6 \ldots \cdots}}}}}=(216)^{y-1} ;$ then $y$ is equal to
Let $x=\sqrt{6 \sqrt{6 \sqrt{6 \sqrt{6 \ldots}}}}$
On squaring both sides, we have: $x^{2}=6 x$ Hence $x=6$
Now, $6=(216)^{y-1}$
$1=3 y-3$
$y=4 / 3$
The square root of $33-4 \sqrt{35}$ is :
$33-4 \sqrt{35}=33-2 \times 2 \sqrt{5 \times 7}$
$=33-2 \times 2 \sqrt{7} \times \sqrt{5}$
$=28+5-2 \times 2 \sqrt{7} \times \sqrt{5}$
$=(2 \sqrt{7})^{2}+(\sqrt{5})^{2}-2 \times 2 \sqrt{7} \times \sqrt{5}=(2 \sqrt{7}-\sqrt{5})^{2}$
$\therefore \sqrt{33-4 \sqrt{35}}=\sqrt{(2 \sqrt{7}-\sqrt{5})^{2}}=\pm(2 \sqrt{7}-\sqrt{5})$