Free Practice Questions for Indices-and-surds in Maths

Practice questions here, for every subject and every exam. Unlimited questions for unlimited attempts, given with answers and explanations.


Question 41:

The greatest number among $\sqrt{5}, \sqrt[3]{4}, \sqrt[5]{2}, \sqrt[7]{3}$ is?

Question 42:

if $\frac{2+\sqrt{3}}{2-\sqrt{3}}+\frac{2-\sqrt{3}}{2+\sqrt{3}}+\frac{\sqrt{3}+1}{\sqrt{3}-1}=a+b \sqrt{3}$ then find the value of $a$.

Question 43:

If $5^{x-2 y}=625$ and $7^{x-3 y}=343$, then find the value of $x-y$.

Question 44:

What is the value of $\frac{\sqrt{192}+\sqrt{320}}{\sqrt{108}+\sqrt{180}}$ ?

Question 45:

If $24^{\sqrt[3]{a}}+10^{\sqrt[3]{a}}=26^{\sqrt[3]{a}}$, then find the value of $a^{2}-a$.

Question 46:

If $x^{x^{1.5}}=\left(x^{1.5}\right)^{x} ;$ then find the value of $\sqrt{\sqrt{x}-0.5}$

Question 47:

If $a=3, b=12, c=10$; then the value of $\sqrt{13+a}+\sqrt{112-b}+\sqrt{c-1}$ is

Question 48:

Solve the following equation:

1.6 + 0.06 +0.006 + 0.0006 + ……………… + ∞

Question 49:

if $(\sqrt{3})^{7} \div(\sqrt{3})^{5}=3^{p}$ then the value of $p$ is:

Question 50:

Write the simplest rationalization factor of the following surds:

$22 \sqrt{45}$

Question 51:

If $p=\sqrt{72-\sqrt{72-\sqrt{72 \ldots \ldots \infty}}}$, then find the value of $p^{2}-4$.

Question 52:

Solve the following equation : $\sqrt{729}-\sqrt{\frac{2704}{169}}+\sqrt{\frac{2025}{81}}$

Question 53:

If$\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\cdots+\frac{1}{n(n+1)}=\frac{99}{100}$then what is the value of $n$ ?

Question 54:

What is the square root of $15-4 \sqrt{14}$ ?

Question 55:

$2 \sqrt[3]{56}-4 \sqrt[3]{448}+3 \sqrt[3]{189}$ is equal to:

Question 56:

The value of$(\sqrt[3]{3.5}+\sqrt[3]{2.5})\left\{(\sqrt[3]{3.5})^{2}-\sqrt[3]{8.75}+(\sqrt[3]{2.5})^{2}\right\} $

Question 57:

If $\mathrm{N}=\frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}$ then value of $\mathrm{N}-\frac{1}{\mathrm{~N}}$ ?

Question 58:

What should be the power of -4 to get -1024?

Question 59:

If $(4+5 \sqrt{7})^{3}=2164+\mathrm{K} \sqrt{7}$, then what is the value of $K$.