Practice questions here, for every subject and every exam. Unlimited questions for unlimited attempts, given with answers and explanations.
The relation between $x$ and $y$ from the equations is
1. $x^{2}-4 x+3=0$
II. $y^{2}-7 y+12=0$
from equation 1,
$\begin{array}{rlr}x^{2}-4 x+3 & =0 \\ \Rightarrow & x^{2}-3 x-x+3 & =0 \\ \Rightarrow & x(x-3)-1(x-3) & =0 \\ \Rightarrow & (x-1)(x-3) & =0\end{array}$
$\therefore \quad x=1,3$
from equation II ,
$y^{2}-7 y+12=0$
$\begin{array}{lr}\Rightarrow & y^{2}-4 y-3 y+12=0 \\ \Rightarrow & y(y-4)-3(y-4)=0 \\ \Rightarrow & (y-3)(y-4)=0\end{array}$
$\therefore \quad y=3,4$
hence, intended relation will be $x \leq y$
समीकरण $2 x^{2}-5 x-3=0$
यहाँ $a=2, b=-5, c=-3$
तब
$
\begin{aligned}
D &=b^{2}-4 a c \\
&=(-5)^{2}-4 \times 2 \times(-3) \\
&=25+24=49(D>0)
\end{aligned}
$
अतः समीकरण के मूल वास्तविक व असमान हैं।
दिए गए समीकरण हैं
$\begin{aligned} & x^{2}-11 x+24=0 \text { व } 2 y^{2}-9 y+9=0 \\ \Rightarrow \quad &(x-8)(x-3)=0 \text { व }(2 y-3)(y-3)=0 \\ \therefore & x=3,8 \text { व } y=\frac{3}{2}, 3 \\ &\end{aligned}$
$\therefore$ उभयनिष्ठ मूल $=3$
दिया है, $x^{2}+208=233$
$\begin{array}{ll}\Rightarrow & x^{2}=233-208 \\ \Rightarrow & x^{2}=25 \\ \Rightarrow & x=\sqrt{25}=\pm 5 \\ \therefore & x=+5,-5\end{array}$
दिया है, $y^{2}-y-30=0$
$\begin{array}{rlr}\Rightarrow & y^{2}-6 y+5 y-30=0 \\ \Rightarrow & y(y-6)+5(y-6)=0 \\ \Rightarrow & (y+5)(y-6)=0\end{array}$
$\Rightarrow \quad y+5=0$ तथा $y-6=0$
$\therefore \quad y=-5,6$
दिया है, $3 x^{2}+8 x+4=0$
$\begin{array}{lr}\Rightarrow & 3 x^{2}+6 x+2 x+4=0 \\ \Rightarrow & 3 x(x+2)+2(x+2)=0 \\ \Rightarrow & (3 x+2)(x+2)=0\end{array}$
$\therefore x=\frac{-2}{3},-2$
समीकरण $y^{2}+2 y-3=0$
$\begin{array}{lr}\Rightarrow & y^{2}+3 y-y-3=0 \\ \Rightarrow & y(y+3)-1(y+3)=0 \\ \Rightarrow & (y-1)(y+3)=0\end{array}$
$\Rightarrow \quad(y-1)=0$ तथा $(y+3)=0$
$\therefore \quad y=1,-3$
समीकरण $x^{2}-2 x-15=0$
$\begin{array}{lr}\Rightarrow & x^{2}+3 x-5 x-15=0 \\ \Rightarrow & x(x+3)-5(x+3)=0 \\ \Rightarrow & (x+3)(x-5)=0 \\ \Rightarrow & (x+3)=0 \text { तथा }(x-5)=0 \\ \therefore & x=-3,5\end{array}$
$\because$ मूलों $\alpha, \beta$ वाली समीकरण $3 x^{2}-6 x+5=0$ है।
मूलों $\frac{1}{\alpha}, \frac{1}{\beta}$ वाली समीकरण $5 x^{2}-6 x+3=0$ होगी।
यहाँ, $2 x^{2}+14 x+9=0$
अत: $a=2, b=14, c=9$
श्रीधराचार्य के सूत्र द्वारा,
$
\begin{aligned}
x &=\frac{-14 \pm \sqrt{(14)^{2}-4(2)(9)}}{2(2)} \\
&=\frac{-14 \pm \sqrt{196-72}}{4} \\
&=\frac{-14 \pm 2 \sqrt{31}}{4} \\
&=\frac{-7 \pm \sqrt{31}}{2}
\end{aligned}
$
अत: समीकरण के मूल $\frac{-7+\sqrt{31}}{2}$ और $\frac{-7-\sqrt{31}}{2}$ हैं।
$x^{2}-7 x+12=0$
$\Rightarrow x^{2}-3 x-4 x+12=0 $
$\Rightarrow x(x-3)-4(x-3)=0 $
$\Rightarrow (x-3)(x-4)=0 $
$\Rightarrow \quad(x-3)=0$ या $(x-4)=0$
$\therefore \quad x=3$ या $x=4$
अत: $x=3,4$ समीकरण के मूल हैं।