Practice questions here, for every subject and every exam. Unlimited questions for unlimited attempts, given with answers and explanations.
The simple interest on a sum is one fourth of the amount and the rate of interest per annum is 4 times the number of years. If the rate of interest is increased by $2\%$, then what will be the simple interest (in ₹) on ₹ 5,000 for 3 years?
Given
Simple interest $=\frac{1}{4}$ (Principal)
$\mathrm{SI}=25 \%$ of principal
Let time $=x$ years, then rate $=4 x \%$
So, $x \times 4 x=25$
$\Rightarrow x^{2}=\frac{25}{4} \Rightarrow x=2.5$
Rate $=4 \times 2.5=10 \%$
Now, rate $=(10+2)=12 \%, P=5000$, Time $=3$ years
So, SI $=\frac{5000 \times 12 \times 3}{100}$
= 1800 rupees.
A sum of money doubles in 4 years at compound interest. That amount will become 8 times of itself at the same rate of interest in the following time
It takes 4 years for a sum to double.
$\therefore 8$ times $=2^{3}$ times
$=4 \times 3=12 $ years
छमाही के लिए,
$P=₹ 12000, A=?, r=\frac{10}{2}=5 \%, n=2 \times 1=2 \text {, }$
$\therefore \quad A=12000\left(1+\frac{5}{100}\right)^{2}$
$=12000 \times \frac{105}{100} \times \frac{105}{100}=₹ 13230$
$\therefore \quad $ब्याज$=13230-12000=₹ 1230$
तिमाही के लिए,
$P=₹ 12000, \quad A=?, \quad r=\frac{10}{4}=2.5 \%$
$\begin{aligned} n &=4 \times 1=4 \\ \therefore \quad A &=12000\left(1+\frac{2.5}{100}\right)^{4} \\ &=12000 \times\left(\frac{102.5}{100}\right)^{4}=₹ 13245.75 \end{aligned}$
$\therefore$ ब्याज $=$ ₹ $1245.75$
$\therefore$ ब्याजों में अन्तर $=1245.75-1230=₹ 15.75$
What amount will amount to ₹ 1352 in 2 years at the rate of 4% compound interest annually?
A=Rs 1352, n=2Year, $r=4 \%$
$\begin{aligned} \therefore \quad P &=\frac{A}{\left(1+\frac{r}{100}\right)^{n}} \\ &=\frac{1352}{\left(1+\frac{4}{100}\right)^{2}} \\ &=\frac{1352 \times 25 \times 25}{26 \times 26} \\ &=Rs 1250 \end{aligned}$
$P=₹ 10000, r=15 \%, n=2$ वर्ष
$\therefore \quad A=P\left(1+\frac{r}{100}\right)^{n}$
$\begin{aligned} \quad &=10000\left(1+\frac{15}{100}\right)^{2} \\ &=10000 \times \frac{115}{100} \times \frac{115}{100} \\ &=₹ 13225 \end{aligned}$
किसी राशि पर $4 \%$ वार्षिक ब्याज की दर से 2 वर्षों के साधारण ब्याज तथा चक्रवृद्धि ब्याज का अन्तर ₹ 1 है, जबकि ब्याज प्रतिवर्ष संयोजित होता है। वह धनराशि है
$r=4 \%, \quad n=2$Years
$\mathrm{CI}-\mathrm{SI}=$ ₹ 1
$\therefore \quad \frac{P r^{2}}{(100)^{2}}=1$
$\Rightarrow \quad \frac{P \times 4 \times 4}{100 \times 100}=1$
$\Rightarrow \quad P=\frac{100 \times 100}{4 \times 4}=$₹ 625
छमाही के लिए,
$P=₹ 800$ $=₹ 800$
$A=₹ 926.10$ $=₹ 926.10$
$r=10 \%$ $=5 \%$
$n=n$ $=2 n$ छमाही
$\therefore \quad A=P\left(1+\frac{r}{100}\right)^{n}$ से
$926.10=800\left(1+\frac{5}{100}\right)^{2 n}$
$\Rightarrow \frac{926.10}{800}=\left(\frac{21}{20}\right)^{2 n}$
$\Rightarrow \quad\left(\frac{21}{20}\right)^{3}=\left(\frac{21}{20}\right)^{2 n}$
$\Rightarrow \quad 3=2 n$
$\Rightarrow \quad n=\frac{3}{2}$ वर्ष
$A_{1}=8820, \quad n_{1}=2 $ वर्ष
तथा $A_{2}=12005, n_{2}=4$ वर्ष
$\therefore \quad 8820=P\left(1+\frac{r}{100}\right)^{2}$
तथा $12005=P\left(1+\frac{r}{100}\right)^{4}$
समी (ii) को समी (i) से भाग देने पर,
$\frac{12005}{8820}=\left(1+\frac{r}{100}\right)^{2}$
$\Rightarrow \quad \frac{49}{42}=1+\frac{r}{100} \Rightarrow r=\left(\frac{49-42}{42}\right) \times 100=16 \frac{2}{3} \%$
$r$ का मान समी (i) में रखने पर,
$
\begin{gathered}
8820=P\left(1+\frac{50}{300}\right)^{2} \\
\Rightarrow \quad P=\frac{8820 \times 6 \times 6}{7 \times 7}=₹ 6480
\end{gathered}
$
$\because$ कोई धन 4 वर्ष में दोगुना हो जाता है।
$\therefore 16=2^{4}$ गुना होने में लगा समय $=4 \times 4=16 $ वर्ष
$r=10 \%, n=3$ वर्ष, $\mathrm{CI}-\mathrm{SI}=₹ 620$
$\therefore \quad 620=\frac{P(10)^{2}(300+10)}{(100)^{3}}$
$\Rightarrow \quad 620=\frac{P(100)(310)}{(100)^{3}}$
$\Rightarrow \quad P=\frac{62 \times 100 \times 100}{31}$
$=₹ 20000$
If the simple interest on a sum of money for 3 years at the rate of $10\%$ per annum is ₹ 1500, then what will be the compound interest on the same amount for the same amount of time at the same rate?
ATQ,
Given that
R=10%
T=3year
S.I=Rs1500
We know that,
S.I=PRT/100
P=Rs5000
Now we need to find compound interest
C.I=P[(1+R/100-1)]
=5000[(1+10/100-1)]
= 1655
So,
C.I=Rs1655
$P_{1}=₹ 1000, r_{1}=10 \%, t_{1}=4$ वर्ष
$P_{2}=₹ x, r_{2}=8 \%, t_{2}=4$ वर्ष
प्रश्नानुसार,$\frac{1000 \times 10 \times 4}{100}+\frac{x \times 8 \times 4}{100}=480$
$\Rightarrow \quad 400+0.32 x=480$
$x=₹ 250$
माना मूलधन $=₹ P$
$\therefore P+5$ वर्षों का ब्याज $=₹ 520$
तथा ₹ $P+7$ वर्षों का ब्याज =₹ 568
समी (ii) में से समी (i) को घटाने पर,
2 वर्षों का ब्याज $=₹ 48$
$\therefore 5$ वर्षों का ब्याज $=\frac{48}{2} \times 5=₹ 120$
समी (i) से,
$P=520-120=₹ 400$
₹ 50000 का 3 वर्ष का चक्रवृद्धि ब्याज क्या होगा, जबकि ब्याज की दर पहले वर्ष $8 \%$, दूसरे वर्ष $9 \%$ तथा तीसरे वर्ष $10 \%$ हो?
P=₹ 50000, $r_{1}=8 \%, r_{2}=9 \%, r_{3}=10 \%$
$A=P\left(1+\frac{r_{1}}{100}\right)\left(1+\frac{r_{2}}{100}\right)\left(1+\frac{r_{3}}{100}\right) $
$=50000\left(1+\frac{8}{100}\right)\left(1+\frac{9}{100}\right)\left(1+\frac{10}{100}\right) $
$=50000 \times \frac{27}{25} \times \frac{109}{100} \times \frac{11}{10}=$₹ 64746
$ \therefore \mathrm{CI}= A-P=64746-50000=$₹ 14746
दिया है, $P=₹ 1600, t=2$ वर्ष 3 माह $=\frac{9}{4}$ वर्ष
$
\begin{aligned} \mathrm{SI} &=₹ 252, r=? \\ \because r&=\frac{\mathrm{SI} \times 100}{P \times t} \\ &=\frac{252 \times 100 \times 4}{1600 \times 9}=7 \% \end{aligned}
$