Practice questions here, for every subject and every exam. Unlimited questions for unlimited attempts, given with answers and explanations.
$\frac{72+\frac{3}{8} \text { of } 56-8}{95-\frac{5}{2} of(25-21)}$
$\Rightarrow \frac{72+21-8}{95-\frac{5}{2} of(4)}$
$\Rightarrow \frac{83}{95-10}=\frac{85}{85}=1$
Which of the following is the largest fraction?$\frac{6}{11}, \frac{13}{18}, \frac{15}{22}, \frac{19}{36}, \frac{25}{33}$
We can write it as:
$
\begin{aligned}
&\frac{6}{11}=0.545 \\
&\frac{13}{18}=0.72 \\
&\frac{15}{22}=0.68 \\
&\frac{19}{36}=0.52 \\
&\frac{25}{33}=0.75
\end{aligned}
$
Clearly, $\frac{25}{33}$ is the largest fraction.
Simplify the following expression.
$\frac{\frac{1}{4} \div \frac{1}{2} \times 1 \frac{1}{3}}{\frac{3}{4} \circ f 8 \div 2}+6 \div 3 \times 2$
$\frac{\frac{1}{4} \div \frac{1}{2} \times 1 \frac{1}{3}}{\frac{3}{4} o f 8 \div 2}+6 \div 3 \times 2$
$\Rightarrow \frac{\frac{1}{2} \times \frac{4}{3}}{6 \div 2}+2 \times 2$
$\Rightarrow \frac{\frac{2}{3}}{3}+4$
$\Rightarrow \frac{2}{9}+4$
$\Rightarrow \frac{2+36}{9}=\frac{38}{9} 4 \frac{2}{9}$
The expression $2 \div 2$ of $\frac{1}{2}+2.5 \times 2 \div 5 \times \frac{3}{5}$ of $\frac{1}{3}-0.5\left(2.5-\frac{1}{2} \times 2 \div \frac{1}{2}\right)$ , on simplification, gives the result as:
$\begin{aligned} & 2 \div 2 \text { of } \frac{1}{2}+2.5 \times 2 \div 5 \times \frac{3}{5} \text { of } \frac{1}{3}-0.5\left(2.5-\frac{1}{2} \times 2 \div \frac{1}{2}\right) \\ \Rightarrow & 2 \div 1+2.5 \times 2 \div 5 \times \frac{3}{15}-0.5\left(2.5-\frac{1}{2} \times 4\right) \\ \Rightarrow & 2+5 \div 1-0.25 \\ \Rightarrow & 7-0.25 \\ \Rightarrow & 6.75 \end{aligned}$
72 x 28 = 36 x 4 x _____________
The number of blank space will be -
(a) multiple of 7.
(b) a prime number.
(c) less than 10.
(d) an even number.
(e) a factor of 56.
Which of the following is true?
Let the number be x.
Now,
72 × 28 = 36 × 4 × x
⇒ 2016 = 144 x x
⇒ x = (2016/144) = 14
Now, when we check options -
(A) 14 is a multiple of 7.
(B) 14 is not a prime number.
(C) 14 is greater than 10.
(D) 14 is a multiple of 2 so it is an even number.
(E) 56 = 4 × 14, therefore 14 is the factor of 56.
So, A, D and E are correct.
If $(11011)_{2}=$( _____ )$_{10}$, then the number in the blank space is -
(a) I is a two digit even number.
(b) I is a multiple of 3, 4, 6.
(c) I have a total of 9 factors.
What number am I?
Factors of the numbers -
36 = 1, 2, 3, 4, 6,9, 12, 18, 36
48 = 1, 2, 3, 4, 6, 8, 12, 16, 24, 48
56 = 1, 2, 4, 7, 8, 14, 56
24 = 1, 2, 3, 4, 6, 8, 12, 24
Clearly, 36 is a multiple of 3, 4, 6 and it has total of 9 factors.
Asha wants to buy a mobile phone by saving some amount from her household expenses. Every week she saves Rs.50 on Monday, Rs.100 on Wednesday and Rs.80 on Friday and spends Rs. 60 out of this on Sunday. For how many weeks will he have to save to buy a mobile worth Rs.5,950?
Total money saved by Asha in a week = (50 + 100 + 80) - 60 = 230 - 60 = 170
Price of Mobile = 5,950
The number of weeks required = 5950/170 = 35
Price of letter weight35 g=20 g+additional15 g=5+2=7
Price of parcel weight250 g=50 g+additional200 g
=50 g+ additional (4×50)g =5+4×3=17
Price of parcel weighting300 g=50 g+ additional250 g
=50 g+ additional (5×50)g =5+5×3=20
Total postal charge=5+7+17+20=49
How many quadrants are there in $18 \frac{3}{4}$ ?
We know that one quadrant is 1/4.
So, $18 \frac{3}{4}=\frac{18 \times 4+3}{4}=\frac{75}{4} \div \frac{1}{4}$=75
$\Rightarrow 3 \times 6+8-6 \div 3+9$
$=18+8-2+9$
$=35-2$
$=33$
$\Rightarrow 3+\left\{1+\frac{1}{3}-(3-4 \div 3)+\frac{1}{4}+\frac{2}{3}\right\}$
$=3+\left\{\frac{3+1}{3}-\left(3-\frac{4}{3}\right)+\frac{3+8}{12}\right\}$
$=3+\left\{\frac{4}{3}-\left(\frac{9-4}{3}\right)+\frac{11}{12}\right\}$
$=3+\left\{\frac{4}{3}-\frac{5}{3}+\frac{11}{12}\right\}$
$=3+\left\{\frac{16-20+11}{12}\right\}$
$=3+\frac{7}{12}$
$=\frac{36+7}{12}$
$=\frac{43}{12}$
The value of $104 \div 39$ of $\frac{2}{3}+1 \frac{2}{5} \times 12 \frac{1}{7}-\frac{3}{4}$ is
$= 104 \div 39$ of $\frac{2}{3}+1 \frac{2}{5} \times 12 \frac{1}{7}-\frac{3}{4}$
$= 104 \div 26+\frac{7}{5} \times \frac{85}{7}-\frac{3}{4}$
$= 4+17-\frac{3}{4}$
$= \frac{16+68-3}{4}$
$=\frac{81}{4}$
$= 20 \frac{1}{4}$
Simplify the following expression.
$\frac{(5+9)-2+24 \text { of } 6 \div 4 \times 12}{-24 \div(-8) \times(-2)+3}$
$\Rightarrow \frac{(5+9)-2+24 \text { of } 6 \div 4 \times 12}{-24 \div(-8) \times(-2)+3}$
$\Rightarrow \frac{14-2+144 \div 4 \times 12}{3 \times(-2)+3}$
$\Rightarrow \frac{14-2+36 \times 12}{-6+3}$
$\Rightarrow \frac{14-2+432}{-3}$
$\Rightarrow \frac{444}{-3}$
$\Rightarrow-148$
$\Rightarrow \frac{\frac{5}{6} \div \frac{5}{2} \times 3-1 \text { of } 2}{1+3 \div \frac{1}{3} \times 6-2}$
$=\frac{\frac{5}{6} \times \frac{2}{5} \times 3-2}{1+3 \times 3 \times 6-2}$
$=\frac{1-2}{1+54-2}$
$=\frac{-1}{53}$
The value of $[8+8-2 \times(2+81)-45 \div 9+(27 \div 9+5 \times 3-19)]$ is
$\Rightarrow[8+8-2 \times(2+81)-45 \div 9+(27 \div 9+5 \times 3-19)]$
$=[8+8-2 \times 83-5+(3+15-19)]$
$=[16-166-5-1]$
$=[16-172]$
$=-156$
$\Rightarrow$ Using BODMAS concept
$
=\frac{3 \text { of } 5 \frac{1}{2}+6 \div 5-2 \text { of } 3 \div 4}{1+\frac{3}{1+\frac{1}{4}} \text { of } 5-3 \frac{1}{3} \text { of } 2 \div 5}
$
$
=\frac{3 \text { of } \frac{11}{2}+6 \div 5-2 \text { of } 3 \div 4}{1+\frac{3 \times 4}{5} \text { of } 5-\frac{10}{3} \text { of } 2 \div 5}
$
$
\begin{aligned}
&=\frac{\frac{33}{2}+\frac{6}{5}-\frac{6}{4}}{1+12-\frac{4}{3}} \\
&=\frac{\frac{33}{2}+\frac{6}{5}-\frac{6}{4}}{1+12-\frac{4}{3}}=\frac{\frac{330-6}{20}}{\frac{35}{3}}=\frac{243}{175}
\end{aligned}
$
The value of $96-4$ of $(18-13)+4 \times 7$ is:
$\Rightarrow$ Using BODMAS concept
$=96-4$ of $(18-13)+4 \times 7$
$=96-4$ of $5+4 \times 7$
$=96-20+28$
$
=104
$
The value of $\frac{7}{8} \div 4 \frac{2}{3}$ of $1 \frac{1}{4}-1 \frac{1}{4} \times 1 \frac{1}{5}+(0 . \overline{53} \div 0.5 \overline{8}) \times 2 \frac{3}{4}$ is:
$\Rightarrow \frac{7}{8} \div 4 \frac{2}{3}$ of $1 \frac{1}{4}-1 \frac{1}{4} \times 1 \frac{1}{5}+(0 . \overline{53} \div 0.5 \overline{8}) \times 2 \frac{3}{4}$
$=\frac{7}{8} \div \frac{14}{3}$ of $\frac{5}{4}-\frac{5}{4} \times \frac{6}{5}+\left(\frac{53}{99} \div \frac{(58-5)}{90}\right) \times \frac{11}{4}$
$=\frac{7}{8} \div \frac{70}{12}-\frac{3}{2}+\left(\frac{53}{99} \times \frac{90}{53}\right) \times \frac{11}{4}$
$=\frac{7}{8} \times \frac{12}{70}-\frac{3}{2}+\frac{10}{11} \times \frac{11}{4}$
$=\frac{3}{20}-\frac{3}{2}+\frac{5}{2}$
$=\frac{3-30+50}{20}$
$=\frac{23}{20}$
Simplify the following expression.
$\frac{2}{5}-\left[1 \frac{1}{3}+\left(1 \frac{1}{4}-2 \frac{1}{3}\right)\right] \div 2 \frac{2}{3} \times \frac{3}{5}+\frac{2}{5}$
$\Rightarrow$ Using BODMAS concept
$
\begin{aligned}
&=\frac{2}{5}-\left[1 \frac{1}{3}+\left(1 \frac{1}{4}-2 \frac{1}{3}\right)\right] \div 2 \frac{2}{3} \times \frac{3}{5}+\frac{2}{5} \\
&=\frac{2}{5}-\left[\frac{4}{3}+\left(\frac{5}{4}-\frac{7}{3}\right)\right] \div \frac{8}{3} \times \frac{3}{5}+\frac{2}{5} \\
&=\frac{2}{5}-\left[\frac{4}{3}-\frac{13}{12}\right] \div \frac{8}{3} \times \frac{3}{5}+\frac{2}{5} \\
&=\frac{2}{5}-\left[\frac{4}{3}-\frac{13}{12}\right] \div \frac{8}{3} \times \frac{3}{5}+\frac{2}{5} \\
&=\frac{2}{5}-\frac{3}{12} \times \frac{3}{8} \times \frac{3}{5}+\frac{2}{5} \\
&=\frac{2}{5}-\frac{9}{160}+\frac{2}{5}=\frac{119}{160}
\end{aligned}
$